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Abstract—Magnetic helical microrobots hold immense promise 
in biomedical domains owing to their compact size and efficient 
propulsion capabilities. However, navigating these microrobots 
through dynamic and unstructured environments, particularly 
when encountering numerous dynamic obstacles, remains a 
formidable challenge. In the study, a control framework based on 
deep reinforcement learning (DRL) with the objective of guiding a 
microrobot through dynamic obstacles towards specified target 
goals is introduced. Initially, we design and fabricate a microdrill 
capable of propulsion via external magnetic rotating fields 
produced by our magnetic actuation system. Subsequently, we 
construct a custom training environment, adhering to the OpenAI 
gym interface, to serve as the simulator for training purposes. 
Utilizing the proximal policy optimization algorithm, we conduct 
training of the navigation policy within this simulator. Simulations 
and experimental validations conducted in dynamic environments 
affirms the efficacy of the proposed method. 

I. INTRODUCTION
Magnetic helical microrobots have garnered significant 

interest in minimally invasive medicine owing to their 
distinctive ability to navigate through confined and enclosed 
spaces via remote manipulation[1-3]. Various approaches have 
been proposed to enhance microrobot navigation. Xu et al. 
proposed an image-based control method that successfully 
achieved planar path following and static obstacle avoidance[4]. 
J. Liu et al. developed a proxy-based sliding mode control
strategy for 3D control of a helical microrobot, enabling
efficient exploration of the shortest route within confined 3D
spaces using existing path planning algorithms[5]. However,
fully autonomous navigation in the complex and dynamic
environment and dynamic obstacle avoidance for the
microrobot remains challenging. When performing in vivo
tasks, the microrobots would inevitably encounter moving
obstacles, such as cell clusters and shed tissue. Therefore, it is
necessary to endow the microrobot with the ability of dynamic
obstacle avoidance to further promote its in vivo biomedical
applications. Unlike navigation in a static environment, the
microrobot cannot move along a predetermined path, on the
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contrary, it has to make optimal decisions in each step and adapt 
to the dynamic environment. 

Efforts have been made to facilitate navigation of 
microrobots in dynamic environments by improving or 
combining traditional path planning algorithms. In a research 
by Q. Fan et al., the combination of static global path planning 
and dynamic local path re-planning was used to achieve static 
and dynamic obstacle avoidance in simulated vascular 
environments[6]. The process commenced with the generation 
of an optimized global path using the Improved Rapidly-
exploring Random Trees (IRRT) algorithm[7], succeeded by 
the utilization of the Artificial Potential Field (APF) 
algorithm[8] to improve real-time performance during dynamic 
obstacle avoidance. Obstacle avoidance for a magnetic bead 
with up to 4 dynamic obstacles is demonstrated. However, the 
success rate of obstacle avoidance is strongly influenced by 
environmental parameters, and this method necessitates 
intricate adjustments to the parameters of two algorithms. 
Moreover, as the number of dynamic obstacles grows, frequent 
local path replanning could increase computational complexity, 
potentially diminishing real-time performance. Another study 
by T. Li et al. employed the fuzzy logic approach, based on 
human experience, to convert natural language control 
strategies into a lookup table[9]. The input variables, such as 
the location and distance of the obstacle to the microrobot, were 
characterized by concepts like "Left" or "Near," while the 
output was a heading angle change, such as "Forward" or 
"Back". However, the extension of fuzzy logic systems to 
accommodate  more complex environments with numerous 
dynamic obstacles presents challenges, particularly concerning 
the management of intricate rule bases under such conditions. 

The integration of deep reinforcement learning (DRL) into 
robotics, particularly in navigation, has introduced new 
possibilities. C. Wang et al. introduced a deep reinforcement 
learning (DRL) methodology for guiding unmanned aerial 
vehicles through vast and intricate environments[10]. M. 
Everett et al. showcased the efficacy of a collision avoidance 
algorithm based on deep reinforcement learning, GA3C-
CADRL, in directing a fleet of four fully autonomous 
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multirotors to avoid collision and navigating a ground robot at 
human walking speed among pedestrians[11]. The integration 
of microrobot control with DRL algorithms has the potential to 
enable optimal decision-making and adaptation to dynamic 
environments. However, due to the highly noisy, complicated, 
dynamic, and unstructured working environment of 
microrobots, it is challenging to accurately model such an 
environment in a virtual training setting. Consequently, the 
integration of DRL algorithms and microrobot control remains 
limited due to the challenge of constructing a virtual 
environment that faithfully replicate the dynamic and 
unstructured nature of real-world microrobot environment.

In the paper, we introduced a DRL-based control framework 
targeting goal-reaching and dynamic obstacle avoidance for 
magnetic helical microrobots. The primary contributions of this 
research are outlined below.

1) A DRL-based control framework is proposed and 
implemented for achieving dynamic obstacle avoidance 
and goal-reaching for a helical magnetic microrobot.

2) To enhance the efficiency of data collection for training,
a custom training environment tailored to capture the 
crucial aspects of the navigation task for magnetic 
helical microrobots is developed.

3) A sim-to-real transfer method is incorporated into the 
training process for seamless transfer of the trained 
policy to real-world systems.

The paper is organized as follows: Section II provides an 
overview of the microdrill design and the magnetic actuation 
system. Section III discusses the details of the collision-free 
navigation model. Training and experimental results are 
presented in Section IV, followed by the conclusions in Section 
V.

II. SYSTEM SETUP
A helical magnetic microrobot is designed for manipulation.

The microdrill was made of compounded 
biocompatible photoresist with a photoinitiator, which was 
fabricated by a high-precision 3D photolithography system 
(NanoScribe Photonic Professional GT). In addition, the 
microdrills were uniformly coated with magnetic nanoparticles 
for magnetic actuation. The manipulation of the microdrills is 
realized through the magnetic field generated by our magnetic 
actuation system. The magnetic actuation system comprises 
eight axial electromagnets enabling five-degree-of-freedom (5-
DOF) motion control of the microdrill. Within a spherical 
workspace of 30 mm diameter, the system can generate a 
rotating magnetic field with a maximum intensity of 30 mT and 
a maximum gradient of 1.6 T/m. The detailed hardware 
specifications can be found in our prior publication[12]. When 
the microdrill is subjected to an external uniform magnetic field, 
the magnetic torque of the microdrill can be expressed as:

=VM B              (1)
where V represents the volume of the microrobot, M represents
its magnetization, and B denotes . The 
torque tends to align the magnetic moment with the applied 
field[13]. By continuously rotating the applied field B in a circle 
on a two-dimensional plane, the microdrill undergoes 
continuous rotation around its helical axis to achieve propulsion.
The swimming direction and forward speed of the microdrill can 
be controlled by manipulating the rotation direction and 
frequency of the magnetic field.

To facilitate the training of the DRL policy, a custom training 
environment both adhering to the OpenAI Gym interface[14]
and abstracting the core physics of the navigation task is 
constructed as the simulator. To better transfer the policy 

Fig. 1.  Illustration of the whole system.
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trained in simulation to the real-world systems, a domain 
randomization method is adopted during training. The trained 
policy receives real-world observations through real-time 
image capture and OpenCV image processing, then produce 
actions to navigate the microrobots .The overview of the whole 
system is illustrated in Fig.1. 

 

III. COLLISION-FREE NAVIGATION MODEL BASED 
ON DRL 

A. Customized Training Environment 
1) Task: In our study, we aim to navigate a microdrill, driven 
by an external electromagnetic system, to a predetermined goal 
location while avoiding dynamic obstacles. The microdrills 
respond to a rotating magnetic field, with motion direction and 
speed regulated by the orientation and frequency of the external 
rotating magnetic fields, respectively. Within the simulation 
environment, each episode involves the random generation of a 
goal location within the environment's boundaries, alongside a 
set number of obstacles randomly placed along either the 
bottom or rightmost edge of the environment. The position of 
one generated obstacle i   can be expressed as follows: 

 
~ [ , ],  0 if 1

,  ~ [0, ] if 1
x U d W y r
x W y U H d rip      (2) 

where [ , ]U a b  denotes a uniform distribution between a  and
b , d  is the safe distance away from the boundary, r  is a 
random variable drawn from a discrete uniform distribution 
{ 1,1} , and W  and H  are the width and height of the 
environment, respectively. 

The direction of each obstacle's movement varies in each 
timestep, but generally, they move toward the upper left corner 
of the environment. The speed of an obstacle i  in each timestep 
is: 

 max min

min max

[ , ]
, 1, 2, ,

[ , ]
ix

iy

v U v v
i n

v U v viv           (3) 

During training, the environment maintains a constant 
number of obstacles, replenishing those that move beyond the 
boundaries with newly generated obstacles based on Equation 
(2). The microdrill's task is considered a failure if it collides 
with either an obstacle or the environment's boundaries, while 
successful navigation is achieved upon reaching the designated 
goal. 
 
2) Observation Space: The observation space is an 8-
dimensional box as shown in TABLE . 

TABLE   OBSERVATION SPACE 

Parameters Meanings 
xp  the x-coordinate of the microdrill's current position 

yp  the y-coordinate of the microdrill's current position 

 the orientation (in radians) of the microdrill's heading 

r  the radius of the circumscribed circle of the microdrill 

xg  the x-coordinate of the goal’s position 

yg  the y-coordinate of the goal’s position 

t  the current timesteps in the episode 

 
3) Action Space: In this environment, we focus on the key 
parameters that govern the motion of a helical micro swimmer, 
specifically, the direction of the rotating magnetic field. The 
action space A  is a 1-dimensional box with lower and upper 
bounds of -1 and 1, respectively. This action is used to adjust the 
orientation of the microdrill, which is updated by adding the 
product of the action and / 6  to the current orientation. In this 
way, we limit the change in orientation of the microdrill to one 
timestep within the range of / 6,  / 6 . 

 [ ]dA                                      (4) 
4) Reward Function: The reward function r  serves as a 
pivotal component in our system, evaluating a reward signal 
composed of four distinct terms: navigation bonus nb , obstacle 
penalty op , time penalty tp , and velocity potential vp . The 
navigation bonus, governed by an attractive potential, 
incentivizes the microdrill to progress towards the goal by 
providing a reward inversely proportional to its distance from 
the goal position. As the microdrill approaches the goal, the 
reward magnitude increases, fostering efficient navigation. 
Conversely, the obstacle penalty discourages the microdrill 
from proximity to obstacles, imposing penalties relative to the 
inverse of obstacle distances. The penalty intensifies as the 
microdrill draws nearer to obstacles, determined by a repulsive 
coefficient that governs the strength of the repulsive force. The 
time penalty discourages prolonged navigation periods, 
imposing a negative reward proportional to the time taken by 
the microdrill to reach its destination. This constant penalty 
serves to promote timely navigation. Additionally, the velocity 
potential reinforces obstacle avoidance behavior, penalizing the 
microdrill for movements towards obstacles and encouraging 
avoidance. This penalty is determined by the dot product of 
relative velocity and obstacle unit vectors, with positive values 
indicating concordant movement and negative values signaling 
movement towards obstacles. The velocity potential parameter 
regulates the strength of the penalty, ensuring appropriate 
responses to obstacle proximity. 
 

TABLE II.  REWARD FUNCTION 

1    Calculate navigation bonus based on the attraction 
coefficient and distance to the goal: 

2

1
n a

g

b c
d

 

2    Calculate obstacle penalty op  based on the repulsive 
coefficient rc , distance between the microdrill and 
the i th obstacle 2id  and the safe distance safed : 

2

1 1n

o r
i i safe

p c
d d

 

3    Calculate time penalty tp  based on a constant penalty 

tk : 

t tp k  
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4   Calculate velocity potential
vp by summing the 

penalties for each obstacle:
For each obstacle i do

Calculate relative velocity between the microdrill 
and the i th obstacle relv
Get the unit vector pointing from the i th obstacle to 
the microdrill ia
if 0rel iv a then
   0vp
else
   vv relp k v a
end if

End for

Calculate total reward r : n o t vr b p p p
Return total reward

IV. EXPERIMENTS

A. Training
We build a custom training environment as shown in Fig. 2 

(a). Due to the highly complex and noisy environment in micro 
scale, completely modelling the physics of such environment in 
the simulator is challenging. Instead, researchers often opt to 
abstract certain key aspects of the real world and customize 
specific simulators addressing specific requirements and 
constraints for simplicity[15-17]. To simplify the simulation 
environment, we adopt the following assumptions:

1. The speed of the microdrill is regulated by the 
frequency of the rotating magnetic field. Given that the 
microrobot typically operates at a fixed frequency 
lower than the step-out frequency, we maintain a 
constant speed in our simulation.

2. The direction of the microdrill's motion is determined 
by the direction of the rotating magnetic field. Hence, 
during navigation, our primary parameter of control is 
the rotating direction of the field.

3. To avoid collision, the microdrill and dynamic 
obstacles must maintain a safe distance. In our 
simulation, we assess potential collisions by comparing 
the distance between the microdrill and an obstacle to 
the sum of the radii of their circumscribed circles.

Fig. 2. (a) Schematic of the custom simulator. (b) Illustration of the observation 
of the microdrill and obstacles.

Given the continuous nature of both the action space and 
observation space in our custom environment, we have chosen 
proximal policy optimization (PPO) as our training algorithm. 
PPO stands out for its sample efficiency, utilizing a clipped 
surrogate objective to mitigate the risk of overly drastic policy 
updates and thus preventing divergence issues[18]. With its 
stochastic policy, PPO inherently balances the exploration-
exploitation trade-off, aiding the microdrill in discerning 
optimal policies within the complexities of our dynamic 
environment. Our training process, outlined in TABLE III, 
begins with the initialization of an "ObstacleAvoidanceEnv" 
environment, purposefully crafted for microdrill navigation 
towards a goal while avoiding obstacles. To enhance sample 
efficiency during training, we generate a vectorized environment 
with multiple parallel instances of the obstacle avoidance 
environment. To gap the difference between reality and 
simulation, we randomize several key parameters in the 
environments during initialization. PPO serves as our chosen 
reinforcement learning algorithm, with the policy function 
employing a multilayer perceptron (MLP), a neural network that 
takes the environment state as input and outputs the probability 
distribution over actions. Additionally, an evaluation callback is 
configured to periodically assess the model's performance on the 
environment, logging relevant metrics and facilitating early 
stopping if performance criteria are met. Throughout training, 
the policy guides the microdrill's actions at each timestep, with 
PPO employing a combination of policy and value iteration for 
iterative policy improvement. The utilization of a clipped 
surrogate objective ensures stable policy updates by 
constraining the objective function to prevent large updates that 
might compromise training stability. Upon completion of 
training, the PPO model is saved for subsequent evaluation, 
testing, and deployment.

TABLE III. TRAINING PROCESS

Training Process
Initialization: 
1   Initialize environment: 

env make_vec_env(ObstacleAvoidanceEnv, n_envs)
2   Initialize model:

model PPO(‘MlpPolicy’, env, verbose, 
tensorboard_log, learning_rate, batch_size)

3   Initialize evaluation callback:
eval_callback EvalCallback(env, log_path=, 

eval_freq=total_timesteps // 10)

Training: 
4   For iteration=1, 2…, total_timesteps do: 
5   Collect data: trajectories CollectData(env, model)
6   For epoch=1, 2…, K do
7   1   Compute policy probabilities and values: 

policy_probs, values EvaluatePolicy(model, 
trajectories)

8   2   Compute advantages and returns: 

301
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 14,2024 at 10:57:02 UTC from IEEE Xplore.  Restrictions apply. 



advantages, returns
ComputeAdvantagesReturns(trajectories, 
values)

9   3   Optimize policy and value function: 
OptimizePolicyValue(model, trajectories, 
advantages, policy_probs)

10   Train model: model.learn(total_timesteps, 
eval_callback)

Save model: 
11   Model.save(save_path)

Training involved 500k total time steps on an NVIDIA 
GeForce RTX 2060 with 22 GB of memory, completing in 19
minutes and 11 seconds. The training metrics, shown in Fig. 3, 
indicate that the "episode mean length" decreases steadily after 
an initial exploration phase, while the "episode mean reward " 
steadily increases until peaking at approximately 200k time 
steps. This trend demonstrates the microdrill's progressive 
refinement of its strategy for more efficient goal achievement, 
reaching optimal performance around 200k time steps.

Fig. 3. The average length of episodes and the average reward of episodes 
during training.

B. Testing in simulation
Simulation tests were conducted to evaluate the obstacle 

avoidance efficacy of the trained policy. The microdrill and goal 
were randomly positioned within an environment containing 12
dynamic obstacles, all obstacles tended to move toward the 
upper left corner. Failure criteria included boundary exceedance, 
obstacle collision, or time limit surpassing. Success rate, 
indicating the microdrill's ability to reach its goal without 
colliding with obstacles, was computed over a thousand 
simulation test episodes. The result showed the success rate 
reaches 93.1% with a mean reward of -52.1, indicating efficacy 
for dynamic obstacle avoidance.

C. Experiment on a real-world system
The magnetic actuation system for experiment is illustrated in 

Fig. 1 . The microdrill, the obstacles, and the goal, are initially 
placed at random positions within the environment. The yellow
circle surrounding the microdrill denote its circumcircle. 
Collision with obstacles or goal attainment is determined by 
assessing if the distance between two objects is smaller than the 

sum of their circumradii. The green track indicate the path of the 
microdrill. Tasked with pursuing the goal while evading 
obstacles, the microdrill adjusts its course accordingly. Upon 
reaching a goal, a new goal is randomly generated for the 
microdrill. In real-world experiments, we utilize image 
processing to simulate artificial obstacles, randomly placing 
them with varying radii within a predefined range. The number 
of obstacles within boundaries is fixed at 12. Fig. 4 illustrates 
the obstacle generation process, where obstacles originate from 
the right and bottom edges, flowing towards the upper left. Fig. 
4(a) demonstrates the microdrill's avoidance maneuver when an 
obstacle approaches. In Fig. 4(b), when surrounded by two 
dynamic obstacles, the microdrill prioritizes avoiding the closest 
one, resulting in a "bouncing" pattern through the obstacles. Fig. 
4(c) depicts the microdrill's behavior when an obstacle is near 
the goal, prioritizing obstacle avoidance before circling back to 
the goal. Finally, Fig. 4(d) displays the complete navigation path, 
with the red flags indicating reached goals. The experiment 
indicates that the trained policy can be successfully transfer to 
the real-world systems and can navigate the microdrill in 
complex and dynamic environments.

Fig. 4. Image sequence capturing the microdrill chasing a sequence of goals 
while avoiding dynamic obstacles.
view.

V. CONCLUSION

This paper presents a Deep Reinforcement Learning (DRL)-
based control method of goal-reaching and dynamic obstacle 
avoidance for a microdrill. The control strategy integrates 
custom training environments, DRL algorithms, a magnetic 
actuation system, and real-time visual tracking methods. 
Initially, we fabricate a helical drill-like microrobot actuated by 
a rotating magnetic field. To gather data effectively, we 
construct a custom DRL training environment compliant with 
the OpenAI Gym interface, abstracting the core physics of the 
navigation task. Leveraging the PPO method tailored to our 
environment's characteristics, we train the policy and 
incorporate sim-to-real transfer techniques to enhance 
adaptability in real-world scenarios. Simulation and 
experimental results demonstrate the successful 
accomplishment of goal-reaching and dynamic obstacle 
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avoidance tasks with notable adaptability, showcasing potential 
applications in biomedical in-vivo settings. In the future, efforts 
will be devoted to improve the adaptability of the method so that 
it can be applied to a wider range of scenarios. 
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